基于变分和稀疏表示的定量 MR 图像 快速重建模型和加速算法

王冬 (东南大学) 杨孝平教授 (南京大学) Prof. David Smith (Vanderbilt University)

2020年08月28日

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

1 基于广义全变分和低秩分解的动态 MR 图像重建

2 基于图形处理单元的实时 MRF 字典生成与匹配算法

イロト イポト イヨト イヨト

э

动态MR成像 基于二阶时空TGV和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

核磁共振成像

核磁共振成像(MRI),尤其是动态 MRI 和定量 MRI 是医学临床和研究中常用的成像方式。

东南大学 计算数学青年学者论坛

< 同 > < 三 >

动态 MR 成像

记动态 MR 图像为 $X \in \mathbb{C}^{N_1 \times N_2 \times d}$,则动态 MR 成像的采样的过程 相当于在噪声的干扰下,在 Fourier 域 (k-t space) 中进行采样

$$B = AX + \epsilon, \tag{1}$$

其中 B 为采集到的数据, A= *M*·*S* 是采样算子, *S* 是作用在每一帧图像上的二维 Fourier 变换, *M* 是作用在每一帧图像上的二 维采样模式, *c* 是加性高斯白噪声。

问题:成像速度慢!

基于压缩感知的动态 MR 图像重建模型

- ▶ 压缩感知理论是由 Candès 等提出的采样理论,是目前快速 MR 成像的主流方法。
- ▶ 假设图像在某个变换域稀疏的前提下,对图像进行非相干下 采样,通过非线性重建算法可以高概率地将图像重建出来。

基于压缩感知的动态 MR 图像重建模型为:

$$\min_{X} \frac{1}{2} \|AX - B\|_{\rm F}^2 + \alpha \|\Phi X\|_1, \tag{2}$$

< □ > < 同 > < 三 > < 三 >

其中 Φ 是某个稀疏变换, $\alpha > 0$ 是平衡数据项和稀疏正则项的参数, F为 Frobenius 范数。这里A为下采样算子。

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

基于压缩感知的动态 MR 图像重建模型

基于压缩感知模型的动态 MR 图像重建有以下三个策略:

▶ 1. 仅利用动态 MR 图像的稀疏性

kt-SPARSE (2006):

$$\min_{X} \frac{1}{2} ||AX - B||_{\rm F}^2 + \alpha ||\mathcal{W}X||_1 + \beta ||\mathcal{F}_t X||_1, \tag{3}$$

其中W是空间方向上的二维小波变换,而 \mathcal{F}_t 是时间上的一维 Fourier 变换。

问题:适用于动态心脏成像,在胸部 DCE-MRI 中表现有限

・ロト ・同ト ・ヨト ・ヨ

基于压缩感知的动态 MR 图像重建模型

▶ 2.考虑动态 MR 图像的低秩性,找到一个既稀疏又低秩的解 这时通常将动态 MR 图像转化为一个时空矩阵,矩阵的每一列相 当于一帧,矩阵的每一行相当于一个像素点。

$$X = \begin{bmatrix} X(p_1, t_1) & \cdots & X(p_1, t_d) \\ \vdots & \ddots & \vdots \\ X(p_{N_1 \times N_2}, t_1) & \cdots & X(p_{N_1 \times N_2}, t_d) \end{bmatrix},$$

其中 p_i, i = {1,...,N₁ × N₂} 为空间坐标, t_i, i = {1,...,d} 为时间坐标。

イロト (同) (三) (三)

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

基于压缩感知的动态 MR 图像重建模型

kt-SLR (2011):

$$\min_{X} \frac{1}{2} \|AX - B\|_{\rm F}^2 + \alpha {\rm TV}(x) + \beta \|X\|_*.$$
(4)

这里

$$\mathrm{TV}(\cdot) = \|\nabla_{\mu} \cdot \|_{1}, \quad |\nabla_{\mu} \cdot| = \sqrt{(\nabla_{x} \cdot)^{2} + (\nabla_{y} \cdot)^{2} + \mu(\nabla_{t} \cdot)^{2}},$$

其中 ∇_x , ∇_y 和 ∇_t 分别为x, y和t方向上的梯度算子, μ 是平衡 空间稀疏性与时间稀疏性的参数, $\|\cdot\|_*$ 为核范数, 是矩阵奇异值 (σ_i)的和, 即 $\|X\|_* = \sum_i \sigma_i$.

问题:重建图像中易出现阶梯效应,重建时间长

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

基于压缩感知的动态 MR 图像重建模型

▶ 3. 利用图像分解的思想,将动态 MR 图像分解为稀疏部分和 低秩部分的加和,并且分别用不同的正则项来约束

Otazo 将图像分解的思想应用到动态 MR 图像重建中,提出模型 L+S (2013):

$$\min_{L,S} \frac{1}{2} ||A(L+S) - B||_{\rm F}^2 + \alpha ||\nabla_t S||_1 + \beta ||L||_*.$$
(5)

Trémoulhéac 提出类似的模型 kt-RPCA (2014):

$$\min_{L,S} \frac{1}{2} ||A(L+S) - B||_{\rm F}^2 + \alpha ||\mathscr{F}_t S||_1 + \beta ||L||_*.$$
(6)

< ロ > < 同 > < 三 > < 三

问题: 仅利用了时间方向的稀疏性

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

基于压缩感知的动态 MR 图像重建模型

Schloegl 等提出了卷积下确界 TGV 泛函 (ICTGV):

 $\mathrm{ICTGV}_{\alpha,\beta}^2(X) = \inf_{X=X_1+X_2} \mathrm{TGV}_{\alpha_1}^2(X_1) + \beta \mathrm{TGV}_{\alpha_2}^2(X_2).$

这里二阶 TGV 泛函的定义为:

$$\operatorname{TGV}_{\alpha}^{2}(X) = \min_{w} \alpha_{1} \| \nabla_{\mu} X - w \|_{1} + \alpha_{0} \| \mathscr{E}_{\mu}(w) \|_{1},$$

其中 $\mathscr{E}_{\mu}(w) = (\nabla_{\mu}w + \nabla_{\mu}w^{T})/2$ 是对称梯度算子。相应的重建模型为 **ICTGV (2017)**:

$$\min_{X} \frac{1}{2} ||AX - B||_{\rm F}^2 + {\rm ICTGV}_{\alpha,\beta}^2(X).$$
(7)

问题:在胸部 DCE-MRI 中的表现未知,重建时间长

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

基于 TGV 和核范数的动态 MR 图像重建模型

总之,上述模型存在着阶梯效应、仅利用时间方向的稀疏性、重 建时间长等不足,且在胸部 DCE-MRI 中的表现未知。

针对动态 MR 图像,基于图像分解的思想,利用 TGV 泛函和核范数,提出如下模型:

$$\min_{L,S} \frac{1}{2} \|A(L+S) - B\|_{\rm F}^2 + {\rm TGV}_{\alpha}^2(S) + \beta \|L\|_*.$$
(8)

- ▶ 核范数 → 建模时间上高度相关的背景
- ▶ TGV 泛函 → 建模背景之上的动态信息

イロト (同) (三) (三)

模型的求解

Primal-Dual 算法被广泛地应用到寻找凸-凹鞍点问题的极大极小问题中:

$$\min_{x \in \mathscr{X}} \max_{y \in \mathscr{Y}} \quad \langle \mathscr{K}x, y \rangle + f(x) - g(y). \tag{9}$$

这里算子 $\mathcal{X}: \mathcal{X} \to \mathcal{Y}$ 是线性连续映射,泛函 $f: \mathcal{X} \to (-\infty, \infty]$ 和 $g: \mathcal{Y} \to (-\infty, \infty]$ 是适定的、凸的和下半连续的。

Chambolle-Pock 迭代格式:

$$\begin{cases} y^{n+1} = (I + \sigma \partial g)^{-1} (y^n + \sigma \mathcal{K} \bar{x}^n), \\ x^{n+1} = (I + \tau \partial f)^{-1} (x^n - \tau \mathcal{K}^* y^{n+1}), \\ \bar{x}^{x+1} = 2x^{n+1} - x^n. \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

动态MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

模型的求解

将模型(8)离散化:

$$\min_{\substack{(S,w,L)\in U\times V\times U}} \alpha_1 \|\nabla_{\mu}S - w\|_1 + \alpha_0 \|\mathscr{E}_{\mu}(w)\|_1 + \beta \|L\|_* \\ + \frac{1}{2} \|A(L+S) - B\|_F^2.$$
(10)

相应的鞍点问题为:

$$\min_{\substack{(S,w,L)\in U\times V\times U(p,q,\lambda)\in V\times W\times U\\}} \max_{\substack{\{\nabla_{\mu}S-w,p\} + \langle \mathscr{E}_{\mu}(w),q\rangle + \beta \|L\|_{*}}} \\
+ \langle A(L+S)-B,\lambda\rangle - \frac{1}{2} \|\lambda\|_{\mathrm{F}}^{2} \\
- \mathscr{I}_{\|\cdot\|_{\infty} \leq \alpha_{1}}(p) - \mathscr{I}_{\|\cdot\|_{\infty} \leq \alpha_{0}}(q).$$
(11)

这里p, q和 λ 是对偶变量。

イロト イヨト イヨト イヨト

æ

动态MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

模型的求解

将鞍点问题(11)转换为结构(9),令

$$\mathcal{X} = U \times V \times U, \quad \mathcal{Y} = V \times W \times U, \quad \mathcal{K} = \begin{pmatrix} \nabla_{\mu} & -I & 0 \\ 0 & \mathscr{E}_{\mu} & 0 \\ A & 0 & A \end{pmatrix},$$

并且

$$f(x) = \beta \|L\|_*,$$

$$g(y) = \langle B, \lambda \rangle + \frac{\|\lambda\|_F^2}{2} + \mathscr{I}_{\|\cdot\|_{\infty} \le \alpha_1}(p) + \mathscr{I}_{\|\cdot\|_{\infty} \le \alpha_0}(q).$$

于是模型(11)的求解过程如算法1的所示。

イロト イポト イヨト イヨト

э.

动态MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

模型的求解

算法1二阶时空TGV和低秩分解模型的Primal-Dual算法

初始化:
$$\sigma, \tau, S_0, L_0$$
, 令 $L_0 = A^*B$, $S_0 = 0$;
迭代: 根据以下步骤更新参数:
1. $p^{n+1} = \mathcal{P}_{\alpha_1}(p^n + \sigma(\nabla_{\mu}\bar{S}^n - \bar{w}^n));$
2. $q^{n+1} = \mathcal{P}_{\alpha_0}(q^n + \sigma \mathcal{E}_{\mu}(\bar{w}^n));$
3. $\lambda^{n+1} = (\lambda^n + \sigma(A(\bar{L}^n + \bar{S}^n) - B))/(1 + \sigma);$
4. $S^{n+1} = S^n - \tau(A^*\lambda^{n+1} - \operatorname{div}_1 p^{n+1});$
5. $w^{n+1} = w^n + \tau(\operatorname{div}_2 q^{n+1} + p^{n+1});$
6. $L^{n+1} = \mathcal{S}_{\beta}(L^n - \tau A^* r^{n+1});$
7. $\bar{S}^{n+1} = 2S^{n+1} - S^n;$
8. $\bar{w}^{n+1} = 2W^{n+1} - w^n;$
9. $\bar{L}^{n+1} = 2L^{n+1} - L^n;$
直到收敛, 返回 x^{n+1}

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

.

イロト イポト イヨト イヨト

э

模型的求解

当迭代步长满足 $\tau\sigma \|\mathcal{X}\|^2 < 1$ 时,算法收敛,因此我们需要估计算子 \mathcal{X} 的模。经计算可得:

$$\|\mathcal{K}\|^2 \le \frac{2\|A\|^2 + 25 + \sqrt{(2\|A\|^2 - 1)^2 + 48}}{2}$$

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

数值试验设置

- ▶ 实验数据: 躯干体模数据、心脏灌注、三组胸部 DCE-MRI
- ▶ 对比模型: kt-SLR, kt-RPCA, L+S, ICTGV
- ▶ 采样模式: Cartesian 采样、伪径向采样
- ▶ 评价指标: SER, SSIM, 像素时间曲线
- ▶ 实验程序: MATLAB 和 CUDA C 程序均已开源, 程序链接https://github.com/chixindebaoyu/tgvnn

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

数值实验结果

Table: 各个模型在不同数据上的重建结果(伪径向采样)

模型	数据集	躯干体模	心脏灌注	胸部1	胸部2	胸部3
Zarofillad	SER	20.54	14.80	11.32	11.57	14.85
Zeronneu	SSIM	0.8321	0.8855	0.4820	0.5897	0.7086
kt SI P	SER	33.35	17.58	17.42	13.61	18.38
Kt-SLN	SSIM	0.9880	0.9412	0.7712	0.6956	0.8461
	SER	29.27	18.33	19.31	14.82	19.81
KI-NF CA	SSIM	0.9700	0.9447	0.8857	0.7920	0.9068
TIC	SER	27.99	19.12	17.60	14.74	19.91
L+3	SSIM	0.9514	0.9490	0.7675	0.7319	0.8791
ICTCV	SER	26.88	17.87	16.31	12.18	16.84
ICIGV	SSIM	0.9435	0.9405	0.6735	0.6080	0.7693
Droposod	SER	32.74	19.57	20.56	16.24	21.08
rioposed	SSIM	0.9917	0.9514	0.9402	0.9091	0.9356

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

东南大学 计算数学青年学者论坛

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

・ロマ・山マ・山マ・山マ・白マ

东南大学 计算数学青年学者论坛

动态MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

Table: 各个模型在不同下采样率下在胸部1数据上的重建结果

基于广义全变分和低秩分解的动态MR 图像重建 基于图形处理单元的实时 MRF 字典生成与匹配算法

采样线 模型		12	22	32	42	52
Zorofillod	SER	5.98	9.06	11.32	12.93	14.33
Zeronneu	SSIM	0.3218	0.4108	0.4820	0.5350	0.5818
let SI D	SER	15.16	16.10	17.42	19.07	19.11
KI-SLN	SSIM	0.7323	0.7312	0.7712	0.8087	0.7989
let DDCA	SER	13.10	17.74	19.31	20.26	21.13
KI-NPCA	SSIM	0.6241	0.8356	0.8857	0.9061	0.9245
TIC	SER	12.75	16.00	17.60	18.73	19.64
L+3	SSIM	0.5885	0.7119	0.7675	0.8018	0.8275
ICTCV	SER	13.56	15.30	16.31	17.03	17.56
ICIGV	SSIM	0.6001	0.6485	0.6735	0.6895	0.7007
Droposed	SER	16.49	19.06	20.56	21.82	22.96
rioposed	SSIM	0.8620	0.9119	0.9402	0.9535	0.9632

动态 MR 成像 基于二阶时空 TGV 和核范数的模型 Primal-Dual 算法流程 数值实验结果与分析

Table: 各个模型在胸部1数据上的重建结果(Cartesian 采样)

模型	Zerofilled	kt-SLR	kt-RPCA	L+S	ICTGV	Proposed
SER	11.29	16.60	16.86	14.55	14.33	17.79
SSIM	0.7370	0.8942	0.9126	0.8379	0.7681	0.9169

э.

イロト イポト イヨト イヨト

Table: 各个模型在胸部1数据上运行时间比较

模型	kt-SLR	kt-RPCA	L+S	ICTGV	Proposed	Proposed
	(CPU)	(CPU)	(CPU)	(CPU)	(CPU)	(GPU)
时间 (s)	5794.88	641.71	493.80	2572.04	2812.90	28.35

- ▶ 利用图像分解思想,提出了针对动态 MR 图像的基于 TGV 与 核范数的重建模型
- ▶ 使用 CUDA C 在 GPU 上对 MATLAB 程序加速,提速 100 倍
- ▶ 数值试验表明在不同的采样模式和采样率下,提出的模型都 比最前沿的模型在消除空间伪影、保持边缘上的表现更好, 尤其是在胸部 DCE-MRI 图像上
- Dong Wang, David S. Smith, Xiaoping Yang. Dynamic MR Image Reconstruction using TGV and Low-rank Decomposition. *Magnetic Resonance in Medicine*. 2020; 83(6); 2064-2076.

- 그 > < 레 > < 글 > < 글

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

❶ 基于广义全变分和低秩分解的动态 MR 图像重建

2 基于图形处理单元的实时 MRF 字典生成与匹配算法

イロト イポト イヨト イヨト

磁共振指纹成像 snapMRF算法框架 数值实验结果与分析

磁共振指纹 (MRF) 是一种新的定量 MRI 方法,可以在单次数据 采集中同时获取多个组织参数,如 T₁, T₂ 和质子密度

MRF 重建参数图的过程中涉及到三个步骤,分别为信号采集、预 定义字典生成和模板匹配。

- 信号采集:选取合适的 MR 序列对信号进行采样,并且 MR 序列的参数,如偏转角(a)、回波时间(*T_E*)、重复时间(*T_R*)等,需要随着时间随机变化,使得不同参数(如 *T*₁、*T*₂)的组织在 MR 序列中产生独特的信号演化(指纹)。
- ▶ **字典生成**: 字典中的元素包含着不同参数的组织在该 MR 序 列中的模拟演化。
- 模式识别:将采集到的信号与字典中的元素进行匹配,重建 参数图。

- 1.5

- 1.0

L 0.5

磁共振指纹成像

æ

イロト イヨト イヨト イヨト

0

-50

-150

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

东南大学

计算数学青年学者论坛

æ

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

MRF 的主要问题:

- ▶ 字典生成:扩展相图(EPG)模型十分耗时且复杂! ⇒ 梯度 场、射频场、驰豫等
- ▶ 匹配算法:模板匹配算法**十分耗时!** ⇒ $O(NL^2K)$ $X = \{x_n \in \mathbb{C}^L, n = 1, ..., N\}$ 为指纹数据, $D = \{d_k \in \mathbb{C}^L, k = 1, ..., K\}$ 为生成的字典, *L*为时间点的个数。模板匹配算法为:

$$\hat{k}_n = \underset{k}{\operatorname{arg\,max}} |\langle d_k, x_n \rangle|, \quad \hat{\rho}_n = \left| \left\langle d_{\hat{k}_n}, x_n \right\rangle \right|$$

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

图形处理单元

- ▶ 图形处理单元(GPU)逐渐成为并行加速科学计算的主流方法,在医学成像领域有着广泛的应用
- ▶ CUDA 是一种通用并行计算架构,可以使 GPU 能够高效地 解决复杂的科学计算问题
- ▶ **首次**在 CUDA 的架构下,提出了基于 GPU 的 MRF 字典生成 与模板匹配的并行加速算法 snapMRF
- ▶ snapMRF程序链接 https://github.com/chixindebaoyu/snapMRF

< ロ > < 同 > < 三 > < 三 > -

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

snapMRF 算法流程

算法 2	snapMRF生成字典与模板匹配算法流程
输人:	*d mrf *d params *d img
输出:	*d_mil; *d_paramo; *d_ing
лыц. 01.	AC_Actions, AC_maps
01.	$\Pi COV \chi [T] T (GW W M T) / T [D] [D] (W M T) / T (W M T) / T [D] (W M T) / T (W M T) / T (W M T) / T (W M T)$
02:	从审学行物入子典参数信息,任人 *d_params;
03:	初始化状态矩阵 *d_w;
04:	送代:从第1个时刻到第L个时刻,并行计算字典中所有元素
05:	使用函数 fill_transition_matrix() 构造转移矩阵;
06:	使用函数 apply_rf_pulse() 将射频场作用在 *d_w上;
07:	使用函数 decay_signal() 将 T1 和 T2 衰减作用在 *d_w上;
08:	使用函数 save_atoms() 将元素的信号保存在 *d_atoms中;
09:	使用函数 dephase_gradients() 将梯度场作用在 *d_w上;
10:	使用函数 decay_signal() 将 T ₁ 和 T ₂ 衰减作用在 *d_w上;
11:	终止迭代;
12:	释放 *d_w;
13:	从 RawArray 文件中读取指纹数据,存入 *d_img;
14:	计算剩余显存大小,并根据剩余显存,将 *d_img分为G组;
15:	迭代:从第1组到第G组,在每一组内并行计算所有体素的参数
16:	使用函数 MRF_minimatch() 进行匹配;
17:	使用函数 generate_maps() 生成参数图;
18:	终止迭代;
19:	将 *d_atoms 和 *d_maps 保存为 RawArray 文件;
20:	释放所有显存和内存。

ヘロア 人間 アメヨアメヨアー

磁共振指纹成像 snapMRF算法框架 数值实验结果与分析

数值实验结果

snapMRF vs EPG-X

snapMRF vs PnP-MRF

イロト イヨト イヨト イヨ

磁共振指纹成像 snapMRF算法框架 数值实验结果与分析

Table: snapMRF 与 EPG-X 在字典生成和模板匹配上运行时间的比较

运行时间	EPG-X	snapMRF	snapMRF	snapMRF
(s)	固定 T _R	固定 T _R	变化 T _R	变化 $T_{\rm R}+B_1^+$
体模/字典生成	17797.05	11.00	7.42	9.39
体模/模板匹配	137.13	5.97	4.14	4.88
脑部/字典生成	18629.82	11.29	7.63	8.72
脑部/模板匹配	143.55	6.13	4.23	4.63

- ▶ 字典大小 1,000 × 100,000
- ▶ 指纹大小 1,000 × 240 × 240

イロト イヨト イヨト イヨト

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

Table: T₁参数图的准确性比较

真实 T ₁	EPG-X	snapMRF	snapMRF	snapMRF
(ms)	固定 T _R	固定 T _R	变化 T _R	变化 T _R +B ₁ +
90.9	128.5	127.7	111.5	94.2
126.9	155.0	155.0	146.5	127.9
176.6	173.1	173.1	172.3	153.8
244.2	280.4	280.4	265.0	225.0
336.5	342.7	342.7	326.5	319.2
458.4	471.2	471.2	471.9	468.3
608.6	602.7	601.2	625.0	622.1
801.7	771.5	770.4	818.5	813.5
1044.0	945.0	943.1	1032.3	1026.0
1332.0	1262.7	1263.1	1310.8	1306.7
1604.0	1568.8	1568.1	1607.3	1593.3
1907.0	1861.2	1861.9	1854.2	1828.8
2173.0	2043.1	2043.1	2091.9	2094.2
2480.0	2366.5	2366.2	2434.6	2416.3
err (%)	4.9	5.0	2.6	3.0

Table: T₂参数图的准确性比较

真实 T ₂	EPG-X	snapMRF	snapMRF	snapMRF
(ms)	固定 T _R	固定 T _R	变化 TR	变化 $T_R+B_1^+$
5.6	6.9	6.9	9.4	12.3
7.9	11.5	11.2	10.0	13.5
11.2	13.3	13.3	11.2	13.5
15.8	13.7	13.5	11.3	20.4
22.6	21.2	21.2	23.3	30.0
32.0	32.3	32.3	38.3	47.3
46.4	45.0	44.8	50.4	60.0
64.1	64.2	64.2	70.2	83.8
96.9	84.6	84.4	90.8	104.6
133.3	144.0	143.8	146.9	170.8
190.9	175.4	175.4	185.2	213.8
278.1	266.5	266.5	255.4	290.0
403.5	323.3	323.5	343.7	407.7
581.3	474.0	474.2	453.5	531.5
err (%)	16.9	16.9	17.9	9.3

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

东南大学

计算数学青年学者论坛

磁共振指纹成像 snapMRF 算法框架 数值实验结果与分析

东南大学 计算数学青年学者论坛

总结

- ▶ 针对 MRF 中字典生成与模板匹配速度慢的问题,提出了基于 GPU 的算法 snapMRF
- ▶ 字典生成的速度提高了 100-10000 倍,模板匹配的速度提高 了 10-100 倍
- ▶ snapMRF 可以处理多种 MR 序列,生成的参数图精度更高
- Dong Wang, Jason Ostenson, David S. Smith. snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs. *Magnetic Resonance Imaging*. 2020; 66; 248-256.

磁共振指纹成像 snapMRF算法框架 数值实验结果与分析

谢谢大家!

东南大学 计算数学青年学者论坛

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>